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CASSCF/6-31G* wave functions of 1 and 2 as the zeroth-order 
wave functions. Such correlated calculations are beyond the scope 
of the present investigation. 

Regarding the activation barrier for the conversion of 1 into 
2, it should be noted that the value calculated at the 
CASSCF/6-31G* level is 5.3 kcal/mol higher than the calculated 
at the CASSCF/3-21G level. This result is consistent with the 
aforementioned fact that the 3-2IG basis set overestimates the 
ring strain in 1. Finally, at the highest level of theory employed 
in this investigation, namely, from the CASSCF/6-31G*// 
CASSCF/3-21G-calculated energies and the zero-point energy 
correction obtained from the CASSCF/3-21G-calculated vibra­
tional frequencies, the activation barrier for the ring opening of 
1 into 2 is predicted to be 21.9 kcal/mol, in excellent agreement 
with the experimental activation energies ranging from 19.1 to 
22 kcal/mol. 

Conclusions 
The following conclusions can be drawn from the ab initio UHF 

and CASSCF calculations reported here: (1) In qualitative 
agreement with early MINDO/3 calculations by Dewar and 
Kirschner, the thermal ring opening of 1 to give 2 takes place via 
a highly nonsymmetric transition state whose geometry shows 
unequal C,C2 and C1C3 bond lengths, with one methylene group 
having rotated ~24° (relative to its position in 1) whereas the 
other remains nearly orthogonal to the plane of the carbon atoms, 
the length of the CC undergoing rupture being ~ 2 A. 

(2) According to both the transition vector of this transition 
state and the IRC reaction path, the rotation of the second 
methylene group takes place in the last phase of the ring-opening 
process, namely, when the C2C3 bond is totally broken and the 
CiC2 IT bond is fully formed. This nonsynchronous rotation of 
the two methylene groups implies that the thermal conversion of 
1 into 2 involves a common transition state for both the conrotatory 
and disrotatory modes of reaction. Therefore, in the absence of 

I. Introduction 
Enzymes called peroxidases catalyze the oxidation of a large 

variety of organic substances using hydrogen peroxide. Because 
molecular oxygen can undergo a series of free radical reactions 
leading to hydrogen peroxide, some peroxidases can also catalyze 
the oxidation of a small number of hydrogen donors by oxygen. 
These hydrogen donors include nicotinamide adenine dinucleotide 
(NADH), nicotinamide adenine dinucleotide phosphate 
(NADPH), dihydroxyfumaric acid, indoleacetic acid, and triose 
reductone.1 In this paper, we will only consider the peroxidase 

substituents in the methylene groups, which may lead to steric 
effects, there should be no special preference between the con-
rotatory and disrotatory modes. An experimental test of this 
interesting prediction is obviously highly desirable. 

(3) In order to locate a transition structure for the ring opening 
of 1 into 2 it is necessary to use a MCSCF wave function whose 
CI expansion includes the singly excited configuration in which 
one electron is raised from the highest doubly occupied MO to 
the lowest unoccupied MO. This configuration appears to be 
essential to describe the electronic changes that take place at the 
transition state. 

(4) Due to the substantial mixing of the (S2) = +'/2 component 
of the first quartet state into the UHF/3-21G doublet wave 
function, the latter method enables the calculation of a transition 
state for the ring opening of 1 into 2 whose geometry is similar 
to that found by using the CASSCF/3-21G model. Furthermore, 
the activation barrier calculated at the UHF/3-21G level differs 
only in 2.8 kcal/mol from that determined at the CASSCF/3-21G 
level. Therefore, the UHF/3-21G model is a good starting point 
to locate transition structures for the ring-opening reactions of 
cycloalkyl radicals. 
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enzyme-catalyzed aerobic oxidation of NADH and refer to it as 
the peroxidase-oxidase (PO) reaction.2 The stoichiometry of the 
overall reaction is 

2NADH + O2 + 2H+ — 2NAD+ + 2H2O (1) 

When this reaction is carried out in an open system in which 
oxygen is continuously supplied to a well-stirred solution of NADH 

(1) Olsen, L.; Degn, H. Biochim. Biophys. Acta 1978. 523, 321. 
(2) Degn, H.; Olsen, L.; Perram, J. Ann. N. Y. Acad. Sci. 1979, 316, 623. 

Sustained Oscillations and Bistability in a Detailed Mechanism 
of the Peroxidase-Oxidase Reaction 

Baltazar D. Aguda and Raima Larter* 

Contribution from the Department of Chemistry, Indiana University-Purdue University at 
Indianapolis, Indianapolis, Indiana 46205. Received August 4, 1989 

Abstract: A detailed mechanism for the aerobic oxidation of NADH catalyzed by horseradish peroxidase, called the per­
oxidase-oxidase reaction, is studied by computer simulation and found to show bistability, damped and sustained oscillations. 
These oscillations are smooth and almost sinusoidal. The mechanism also predicts that a stable oscillatory state and a stable 
steady state can coexist for the same set of parameters. Decreasing the oxygen concentration in the gas phase for a short 
period of time is found to perturb the stable steady state toward the oscillatory state, while a spike of hydrogen peroxide drives 
an oscillatory state to a stable steady state. The mechanism is compared with detailed mechanisms proposed by other investigators 
as well as two 4-species abstract models we have studied previously. 

0002-7863/90/1512-2167S02.50/0 © 1990 American Chemical Society 



2168 J. Am. Chem. Soc, Vol. 112, No. 6, 1990 Aguda and Larter 

Table I. Observed Nonlinear Behaviors of the Peroxidase-Oxidase Reaction in an Open System 

behavior investigators exptl conditions" 

A. damped oscillations Yamazaki, Yokota, and pH 5.12, 25 0C, 0 2 /N 2 (1:24) bubbled, 0.8 mM NADH, 10 /xM HRP 

B. bistability 
C. sustained oscillations 

D. chaos 

Nakajima, 1965 (ref 41) 
Degn, 1968 (ref 17) 
Nakamura, Yokota, and 

Yamazaki, 1969 (ref 3) 
Olsen and Degn, 1977 

(ref 40) 

pH 5.5, 25 0C, 0 2 /N 2 blown, 1.4 mM NADH, 0.4 MM HRP 
pH 6.4, 25 0C, 5% O2 bubbled, 1 mM NADPH, 10 ^M HRP, added: glucose-6-phosphate 

dehydrogenase, methylene blue, and 2,4-dichlorophenol 
pH 5.1, 28 0C, 1.65% O2 blown, infusion of 0.25 mM NADH, 1.2 nM HRP, 

added: methylene blue and 2,4-dichlorophenol 
0 HRP = horseradish peroxidase. No infusion of NADH in A and B. 

Table II. Reactions involved in the Peroxidase-Oxidase System and Their Rate Constants 

no. 

Ri 
R2 

R3 
R4 

R_4 

Rs 

R6 

R7 

R8 
R9 

Rio 

RM 
R12 

Rl3a 
R|3b 
R14 

R15 

R16 

Rn 
R18 

reaction 

Per3+ + H2O2 — col 
col + NADH — coll + NAD* 
coll + NADH — Per3+ + NAD' 
coll + H 2 O 2 -COlI I 
colli — coll + H2O2 

Per3+ + NAD* — Per2+ + NAD+ 

Per2+ + O 2 - * colli 
colli + NADH — col + NAD' + H+ 

colli + NAD' —col + NAD+ 

col + O2- — coll + O2 

Per3+ + O2" — colli 

NAD* + O2 — NAD+ + O2-
H+ + O f + NADH — H2O2 + NAD' 

2NAD- + H + - NADH + NAD+ 

2NAD* — NAD-NAD 
2O2- + 2H+ — H2O2 + O2 

Per2+ + colli — Per3+ + col 
NADH + O2 + H+ — H2O2 + NAD+ 

NAD* + H2O2 + H + - NAD+ + H2O + HO' 
NADH + HO* — NAD- + H2O 

reaction rate, v 

A1 [Per3+] [H2O2] 
Ar2[CoI][NADH] 
Ar3[COlI][NADH] 
A4[CoII] [H2O2I 
/L4[COlII] 

A5[Per3+][NAD'] 
A6[Per2+][02] 
Zt7[CoIII][NADH] 
Zt8[COlII][NAD-] 
McOl][O2-] 
*,o[Per3+][02-] 

*„ [NAD'] [O2] 
Ar12[O2-] [NADH] 

A1J1[NAD']2 

A136[NAD-]2 

A14[Of]2 

A15[Per2+] [colli] 
A16[NADH][O2] 
A17[NAD-J[H2O2] 
A18[NADH][HO-] 

rate const, A 

1.8 X 1O7M"' s-' 
5.4 X 103 M-' s"1 

8.0 X 102 M"1 s"1 

46.0 M"1 S"' 
2.OX 10-3S"1 

3.0 X lO"4 s"1 

very slow 
5.8 X 104 M-' s"1 

very slow 
1.3 X 108M"1 s-' 

1.9 X 106 M"1 S"' 
1.5 X 1O5M-1S"' 
2.0 X 10' M-' s"1 

5.9 X 103 M"1 s"1 

<3.5 X 104 M-' s-' 

3.0 X 107 M"1 s-' 
1.1 X 107 M"1 s"1 

2.0 X 107 M-' s-' 
very fast 
3.0 X 10"6 s"1 

8.6 X 10s M"1 s-' 

ref 

1,4,26-29 
4, 26-28 
26-28 
30 
31 
4 
4,32 
32,33 
34,35 
4,35 
36 
4, 32, 37 
5 
4, 19, 32 
4,32 
5 
32 
18, 19 
32, 38 
5 
4, 33, 39 
4, 35 
4 
4 

and horseradish peroxidase, a variety of nonlinear behavior is 
observed including bistability, damped and sustained oscillations, 
and chaos.2 The first reported observations of these phenomena 
are listed in Table I. Sustained oscillations were first observed 
in a related reaction involving NADPH as the substrate; in this 
system, NADPH is kept at a constant level by regenerating it from 
its oxidation product with a second enzyme glucose-6-phosphate 
dehydrogenase.3 Experiments1 wherein NADH is pumped into 
the solution at a constant rate (instead of regenerating it with an 
enzyme reaction as was done for NADPH) have yielded stable 
periodic oscillations as well. 

Analyses of some proposed mechanisms for the PO reaction 
have been performed by Yokota and Yamazaki4 (closed system), 
Olsen and Degn,1,5 and Fed'kina and co-workers6'7 (closed and 
open systems). Fed'kina, Ataullakhanov, and Bronnikova7 have 
presented computer simulations using a detailed mechanism which, 
in a reduced form derived by applying several restrictive as­
sumptions, generated sustained oscillations. Using the stoichio­
metric network analysis formalism,8 Aguda and Clarke9 studied 
a large network of reactions consisting of known possible mech­
anistic steps and were able to identify the steady state pathways 
and feedback loops that are dominant under bistable conditions. 
On the basis of these dominant pathways, they proposed a model 
that was shown to exhibit bistability and damped oscillations, 
among other things; we shall refer to this latter mechanism as 
model A. The main purpose of this paper is to show that model 

(3) Nakamura, S.; Yokota, K.; Yamazaki, I. Nature 1969, 222, 794. 
(4) Yokota, K.; Yamazaki, I. Biochemistry 1977, 16, 1913. 
(5) Olsen, L. Biochim. Biophys. Acta 1978, 527, 212. 
(6) Fed'kina, V.; Ataullakhanov, F.; Bronnikova, T.; Balabaev, N. Biophys. 

Chem. 1978, 72, 195. 
(7) Fed'kina, V.; Ataullakhanov, F.; Bronnikova, T. Biophys. Chem. 1984, 

19, 259. 
(8) Clarke, B. L. Adv. Chem. Phys. 1980, 43, 1. 
(9) Aguda, B. D.; Clarke, B. L. J. Chem. Phys. 1987, 87, 3461. 

A is also sufficient to account for the sustained oscillations ex­
hibited by the PO reaction in some laboratory experiments. A 
secondary purpose is to elucidate the source of the oscillatory 
behavior in terms of the interaction of the feedback loops present 
in the mechanism. 

We discuss in section II some background concerning exper­
imental details of the PO reaction and summarize the results and 
problems of previous modeling studies of the reaction. Also in 
section II, we point out some similarities between two 4-species 
models2'10 we have studied previously and the detailed mechanism, 
model A, studied here. Our previous studies""13 of the simple 
4-species models have helped us considerably in developing some 
intuitive understanding of the dynamics of the PO reaction. New 
computational results for model A are given in section III. There 
it is shown that model A also exhibits bistability between a stable 
oscillatory state and a stable steady state for some choices of rate 
constants and total enzyme concentration. Previously, Aguda and 
Clarke9 have only found bistability between two stable steady states 
in model A, so the results reported here constitute a significant 
advance in our understanding of the details of the biochemistry 
which lead to sustained oscillatory behavior in the PO reaction. 

II. The Peroxidase-Oxidase Mechanism 

We will review in this section some of the detailed mechanisms 
that have been previously proposed for the PO reaction. A listing 
of possible reactions involved in the PO mechanism is given in 
Table II along with available values of the rate constants, either 
extracted from experimental data or derived from computer 
simulations. The following standard abbreviations have been used 

(10) Olsen, L. Phys. Lett. 1983, A94, 454. 
(11) Larter, R.; Bush, C; Lonis, T.; Aguda, B. J. Chem. Phys. 1987, 87, 

5765. 
(12) Larter, R.; Steinmetz, C; Aguda, B. J. Chem. Phys. 1988, 89, 6506. 
(13) Aguda, B. D.; Larter, R.; Clarke, B. J. Chem. Phys. 1989, 90, 4168. 
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Figure 1. (a) Common steps in the detailed mechanisms discussed in the 
text, (b) The Yokota-Yamazaki mechanism for the peroxidase-oxidase 
reaction. See Table II for the details of the reaction steps. For each 
reaction arrow, the number of barbs on the arrow head gives the number 
of molecules of product formed and the number of feathers on the left 
side of the arrow tail gives the order of kinetics with respect to the given 
reactant species. (This convention is adopted from Clarke, ref 8.) 

in Table II for the five enzyme species (listed here in order of 
increasing oxidation state, +2 to +6): Per2+ = ferroperoxidase, 
Per3+ = ferriperoxidase (native enzyme), coll = compound II, 
col = compound I, and colli = compound III. 

The reactions shown in Figure la are common to all the 
mechanisms discussed below. The differences between these 
mechanisms reflect the uncertainties in the way compound III 
decomposes. Note that the feedback loop composed of reactions 
R1, R2, and R3 represents the peroxidase catalytic cycle that 
generates NAD* free radicals. Adding reactions for the decom­
position of compound III will introduce another feedback cycle 
that would be coupled to the peroxidase catalytic cycle. As shown 
in Figure 1, the branching steps leading separately to the two 
feedback loops are the reactions Ri0 and R12. The interaction 
between these two feedback loops generates interesting dynamics 
when oxygen and/or NADH are fed continuously into the open 
system. 

A. The Yokota-Yamazaki (YY) Mechanism. A computer 
simulation of a detailed mechanism of the PO reaction in a closed 
system was performed by Yokota and Yamazaki (YY).4 The YY 
reaction scheme includes the steps shown in Figure la and re­
actions R8, R_4, RM, R,6, R17, and R18 found in Table II; Figure 
1 b shows the network diagram of the YY scheme. Note that the 
bimolecular reaction between compound III and NAD' radical 
is considered to be the dominant decomposition pathway for 
compound III in the YY mechanism. The reactions involving the 
enzyme species Per2+ are not considered in the YY scheme. 

In their computer simulations, YY used reported experimental 
values of the rate constants available at that time and were able 
to generate the four experimentally observed characteristic phases 
of compound III kinetics shown in Figure 2a: initial burst, in­
duction, steady state, and abrupt decomposition. The YY sim­
ulations reproduce these four phases nearly quantitatively. 
Aguda14 confirmed their simulations and also showed that the time 

! 
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(b) 
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log vio 
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11 m e (S) 

Figure 2. (a) The four experimentally observed characteristic phases of 
compound III kinetics in a closed system: A = initial burst, B = in­
duction, C = steady state, and D = abrupt decomposition, (b) Corre­
sponding logarithm of the rates of reactions R10 and R12 during the four 
phases of compound III kinetics. 

series for the concentrations of O2, NADH, H2O2, coll, and colli 
have the same qualitative appearance as those observed experi­
mentally. 

A clue as to why oscillations are observed when the system is 
continuously "pumped" with oxygen and NADH can be gleaned 
from the variation in reaction velocities through the four char­
acteristic phases. As shown in Figure 2b, the velocities of the two 
branching reactions, R10 and Rj2, increase in a similar fashion 
during the induction phase (i.e. when molecular oxygen is not being 
consumed because of a low level of NAD"). However, the rate 
of colli formation (v]0) drops drastically during the transition from 
the induction phase to the steady-state phase because of the 
depletion of Per3+. Colli attains a near-steady-state level because 
not enough NAD - radicals are present to transform it into CoI 
via reaction R8. In the meantime, the catalytic cycle initiated 
by the branching reaction R12 generates these NAD* radicals that 
will eventually break down colli. When oxygen is depleted, the 
decomposition of colli through its reaction with NAD* radicals 
gets accelerated due to the production of more radicals by reactions 
R2 and R3. With a continuous input of oxygen, this cycle (i.e. 
increase in colli followed by an increase in NAD" radicals which 
causes the decomposition of colli) can be sustained. 

Even though the results of simulations with the YY mechanism 
agree very well with experiment, we must caution that certain 
mathematical inconsistencies exist in the YY kinetic equations 
that may render the conclusions questionable. First, they used 
the rate expression t'16 = ^16[NADH] for the autoxidation reaction 
of NADH (R16) but neither the expression for d[NADH]/dr nor 
that for d[02]/df involves vi6. Second, YY added reactions R17 

and R18 (cancelling NAD" and HO" radicals) and used the rate 
expression vl7 = ^17[NAD"] [H2O2] for the combined reaction; 
although V11 does not contain [NADH] as a factor, the expression 
for d[NADH]/dr does include the negative term (-f17) which 
could possibly drive [NADH] down to negative values. Lastly, 
the YY scheme does not contain a chain terminating reaction like 
R13 (in Table II), and this is probably the reason why a significant 

(14) Aguda, B. D. Unpublished Notes, 1985. 
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Figure 3. Network diagram of model A for the peroxidase-oxidase 
reaction. The details of the component reactions are given in Table II. 

amount of NAD' radicals are present at the end of the reaction 
as was found by Aguda'4 when he duplicated the YY computer 
simulations. 

B. The Fed'kina-Ataullakhanov-Bronnikova (FAB) Oscillatory 
Mechanism. The FAB mechanism7 consists of those common 
reactions in Figure la, reaction R8 (Table II), and a termination 
reaction of NAD* radicals which is first order in [NAD']. It is, 
in fact, identical with the next model to be discussed below (model 
A, shown in Figure 3) except for the order of the termination 
reaction for NAD* radicals. Second-order termination kinetics, 
which is the case for model A, is necessary for the existence of 
three steady states for the open reaction system.15 

The FAB simulations were performed under the following 
assumptions: NADH is kept at constant concentration; compounds 
I, II, and III and O2" are fast variables that relax rapidly to the 
slow motion of the system described by the differential equations 
involving NAD*, H2O2, and O2; and finally, O2 changes in a 
quasistationary manner at the characteristic time of the slow 
subsystem. Under these restrictive assumptions, oscillations are 
then found in the concentrations of the two remaining dynamical 
species, NAD' and H2O2. As in the YY scheme, Per2+ is ignored 
in the FAB mechanism. 

FAB reported an expression (eq 4 in ref 7) for the period of 
the oscillations as a function of total enzyme concentration (E1), 
NADH concentration, and the rate constants associated with the 
reactions of the feedback loop involving colli. This expression 
predicts that the oscillation period increases with E1 in a hyperbolic 
manner. Although Fed'kina and co-workers16 have demonstrated 
experimentally that smooth (instead of the usual sawtooth2) os­
cillations do indeed occur by raising the temperature, it was also 
observed that (at low oxygen concentrations) decreasing E1 leads 
to an increase in the oscillation period which is contrary to the 
FAB expression mentioned above. 

C. A Bistable Mechanism: Model A. Using stoichiometric 
network analysis,8 Aguda and Clarke9 extracted a bistable model 
from the reactions listed in Table II. This mechanism, referred 
to as model A, is shown in Figure 3. Note that it differs from 
the FAB mechanism only in the bimolecular termination reaction 
for NAD* radical. Model A was shown to have the same network 
components responsible for the bistability exhibited by the 4-species 
classical substrate-inhibition enzyme mechanism.17 These network 
components necessary for bistability are the following: a catalytic 
cycle coupled with an inhibition cycle, and a reversible flux of 
substrate. 

Model A was previously shown to exhibit bistability, damped 
oscillations, and substrate inhibition.9 Our computer simulations 
using this model will be presented in the next section where we 
show that it generates sustained oscillations as well. In contrast 
to the study of the FAB mechanism, we do not reduce the kinetic 
equations by assuming any fast or slow variables but, rather, we 
integrate the whole set of differential equations. Note that pH 

(15) Aguda, B. D. Ph.D. Thesis, University of Alberta, 1986. 
(16) Fed'kina, V.; Bronnikova, T.; Ataullakhanov, F. Stud. Biophys. 1981, 

82, 159. 
(17) Degn, H. Nature 1968, 217, 1047. 

and NADH concentration are kept constant, and Per2+ is excluded 
as in the YY and FAB schemes. 

D. Other Models and Features of the PO Mechanism. The 
reported value for the rate constant of the reaction between Per2+ 

and O2 (R6 in Table II) is just a few orders of magnitude smaller 
than that of the reaction between NAD" radicals and O2 (Rn in 
Table II), and Per2+ probably should be included in a detailed 
model. The three models discussed above ignored reactions in­
volving Per2+ mainly because this enzyme species is known to be 
produced very slowly by the reaction between Per3+ and NAD* 
radicals (R5 in Table II) so its concentration is not high. A model 
that included Per2+ (model I of Fed'kina et al.6) did not agree 
with the experimental observation16 that as the initial oxygen 
concentration is increased, the duration of the induction phase 
lengthens. Fed'kina and co-workers6 showed that model I predicts 
exactly the opposite. However, in agreement with experiments, 
model I does predict that the duration of the steady-state phase 
increases with initial oxygen concentration. Fed'kina et al.6 studied 
another model similar to the YY scheme which predicts that the 
duration of the induction phase does not depend on the initial 
concentration of oxygen; however, this same model does agree with 
experiment regarding the duration of the steady-state phase. 

Reaction R n is a step in which oxygen directly drives the two 
feedback loops in the mechanism. Another reaction that could 
drive the feedback loop involving compound III is reaction R6 

between oxygen and Per2+ which is not included in model A. As 
will be discussed in the next subsection, an analogous 4-species 
model in which two coupled feedback loops are both driven by 
oxygen can give rise to complex mixed-mode oscillations. The 
role of reaction R6 in generating mixed-mode oscillations in the 
detailed mechanism will be investigated in a future publication. 

Another complicating feature of the PO mechanism is the role 
of (NAD)2 dimers. The rate constant for the dimerization of 
NAD* radicals has been reported to be about 3 X l O 7 M"1 s"1, 
and this reaction may be the preferred route for NAD* chain 
termination rather than the disproportionation of NAD" radi­
cals.18,19 Avigliano and co-workers20 have shown that horseradish 
peroxidase catalyzes the oxidation of (NAD)2 dimers to NAD+ 

and postulated some reaction schemes in which the dimer reacts 
in a similar fashion as NADH. Again, these points are not taken 
into account in model A but should be considered in future re­
finements of the detailed mechanism. 

Lastly, but probably not the least important, the mechanistic 
roles played by dichlorophenol and methylene blue in the sustained 
oscillations need to be elucidated (see Table I). Olsen and Degn1 

report that dichlorophenol must be present in order to obtain 
sustained oscillations, otherwise only damped oscillations are 
observed. It is observed that addition of dichlorophenol causes 
a rapid decrease in the concentrations of oxygen and colli. 
Furthermore, the bistability phenomenon disappears with the 
addition of dichlorophenol.1 On the other hand, methylene blue 
is not required for sustained oscillations but is useful to stabilize 
these oscillations under certain conditions. 

E. Abstract Models of the PO Reaction. Degn, Olsen, and 
Perram (DOP)2 proposed a 4-species model that can simulate the 
experimentally observed sustained sawtooth oscillations of the PO 
reaction. This model is shown in Figure 4a. Species A is assumed 
to be oxygen, B is NADH, and X and Y are unidentified chain 
carrier species involved in autocatalytic reactions. Later, Olsen10 

proposed a very similar model shown in Figure 4b. Both the DOP 
and Olsen models show chaotic oscillations,11"13 as was known 
experimentally, but the latter model has been shown to generate 
chaos within a broader range of some parameters.1013 We have 
also found mixed-mode oscillations in both models11'13 as well as 
quasiperiodicity and phase-locking on a torus in the DOP model;21 

(18) Samec, Z.; Bresnahan, W. T.; Elving, P. J. J. Electroanal. Chem. 
1982, 133, 1. 

(19) Land, E. J.; Swallow, A. J. Biochim. Biophys. Acta 1971, 234, 34. 
(20) Avigliano, L.; Carelli, V.; Casini, A.; Finazzi-Agro, A.; Liberatore, 

F. Biochem.J. 1985,226, 391. 
(21) Steinmetz, C; Larter, R.; Aguda, B. Proc. Indiana Acad. Sci., in 

press. 
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(b) 

Figure 4. (a) The Degn-Olsen-Perram model (ref 2) for the per­
oxidase-oxidase reaction, (b) The Olsen model (ref 10) for the per­
oxidase-oxidase reaction. In both models, A = [O2], B = [NADH], and 
X and Y are chain carrier intermediates. 

neither of these behaviors has yet been confirmed experimentally. 
In a recent paper,13 we showed that the intermediate X plays 

the same role as NAD" and species Y the same role as compound 
III in a more realistic mechanism such as model A. Here we point 
out the similarities between the two feedback loops present in both 
the 4-species models and the realistic mechanism. The auto-
catalytic reaction 1 (of the 4-species models) corresponds to the 
peroxidase catalytic cycle that generates NAD* radicals. The other 
feedback loop involving Y and reactions 2 and 3 (of the 4-species 
models) corresponds to the enzyme feedback loop that involves 
compound III. Simulations with the Olsen model performed 
previously13 showed that when the rate constant for the production 
of Y is low, only damped oscillations are observed; likewise, if the 
rate constant for compound III production is not sufficiently high, 
only damped oscillations are found.7,13 Our previous experience 
with these four-species models in fact guided us in finding values 
of the rate constants that produced sustained oscillations in model 
A. 

We also see that in the Olsen model, the reaction involving A 
(oxygen) is linked only to the feedback loop involving Y. This 
corresponds, in a realistic mechanism, to the reaction between 
ferroperoxidase and oxygen (not included in model A) which 
produces compound III, thus entering the second feedback loop. 
The DOP model, in contrast, has oxygen entering both feedback 
loops; correspondingly, in the detailed mechanism, the reaction 
between oxygen and NAD* (R n ) drives both feedback loops via 
the branching reactions R10 and R12. In this respect, the DOP 
model may be in better agreement with the realistic mechanism 
than the Olsen model. 

Simulations of the detailed PO mechanisms have so far not 
yielded the complex oscillations or chaos seen in the experiments 
and simulations with the 4-species models. We believe that the 
"forcing" of the feedback loops by species A (oxygen) is responsible 
for these behaviors in the 4-species models""13 and that complex 
oscillations and chaos will not be observed in these detailed 
mechanisms unless a similar forcing reaction is included. Toward 
this goal, the effect of including the reaction between Per2+ and 
O2 (R6 in Table II) as a step forcing the feedback loop involving 
colli is currently being studied by our group. 

III. Results of Computer Simulations with Model A 
A. Dynamical Equations. Assuming isothermal and well-stirred 

conditions, the kinetics of the reaction system is given by the 
following set of autonomous ordinary differential equations 

dX/df = i>v(X,k) (2) 

where X is a vector of n concentrations, visa vector of r reaction 
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rates that are functions of X and the vector of rate constants k, 
and v is the nxr stoichiometric matrix whose element i>y is equal 
to the stoichiometric coefficient of species X, on the product side 
minus that on the reactant side of reaction R .̂ 

For model A, n = 8 and r = 10 and we let X = ([H2O2], 
[NAD-], [O2I , [O2], [Per3+], [col], [coll], [colli]) where [] 
indicates "concentration of". Only 7 of the 8 species are inde­
pendent dynamical variables because of the conservation of total 
enzyme concentration, i.e. 

E1 = [Per1*] + [col] + [coll] + [colli] = constant (3) 

Thus, we have a total of 11 parameters (10 rate constants and 
I conservation constraint) in the dynamical equations of model 
A. 

The components of the vector of reaction rates, v = (D1, D2, D3, 
D8, D10, vn, Vn, vn, vin, V0111), are given in the third column of Table 
II (vm and Dout are defined below). Recall that NADH is not a 
dynamical species so that either reaction R13a or R13b in Table 
Il can be chosen. The rates D1n and D0,,, correspond to the two terms 
in the rate of diffusion of oxygen gas across the phase boundary 
(see ref 2) as given by the following expression 

diffusion rate = ^([O2Je11-[O2]) = vin - V0111 (4) 

where [O2]^ is the dissolved oxygen concentration (in the liquid 
phase) when it is equilibrated with the gas and [O2] is its con­
centration if not at equilibrium. The value of the oxygen transfer 
constant kt depends on the volume of the reaction vessel and on 
the stirring rate. For the experiments done by Degn, Olsen, and 
Perram,1 kx is typically on the order of 0.0035 s"1. We shall let 
Din = ^t[O2J61J and Dout = fc,[02]. The quantity D1n' is taken to be 
an experimentally controllable parameter since the oxygen pressure 
can be manipulated. The integration of the system of differential 
eq 2 was carried out with the Gear method.22 

B. Damped and Sustained Oscillations. Aguda and Clarke9 

reported damped oscillatons in numerical studies of model A but 
were not able to find sustained oscillations. As shown in Figure 
5, we have now determined that model A also generates smooth, 
almost sinusoidal sustained oscillations using the rate constants 
given in the figure caption. Calculation of the variation in reaction 
velocities during the oscillations reveals that the rates of reactions 
R10 and R]2 oscillate out-of-phase in the same manner as in the 
YY scheme for the closed system (compare Figures 2 and 6). This 
implies that the discussion given previously for the YY scheme 
applies to each period of the sustained oscillations shown in Figure 
5. 

C. Bistability between a Steady and an Oscillatory State. 
Steady-state analysis of model A shows that a stable oscillatory 
state and a stable steady state may coexist over certain ranges 
of the parameters Jc10, D1n, and E1. For example, we show in Figure 
7 an S-shaped curve for the steady state [O2] as a function of ^10. 
In this figure, the two Hopf bifurcation points (labeled Hl and 
H2) that delineate the boundary of the oscillatory region are shown 
along with the amplitude of the oscillations indicated by the dotted 
curve. The positions of the Hopf bifurcation points were deter­
mined by numerical calculation of the stability eigenvalues of the 
steady-state solution; the amplitude of the oscillatory solution 
which bifurcates from these points was determined from the 
numerical solutions of the kinetic eq 2. Between the values of 
kl0 at Hl and at the lower knee of the S-shaped curve we find 
the coexistence of a stable oscillatory state and a stable steady 
state. The coexistence region extends over a range of values of 
vm and E1 as well; this range will be given in the next subsection. 

We show in Figure 8 a simulation of a suggested experiment 
that could be performed to illustrate bistability between an os­
cillatory state and a stable steady state. Decreasing the O2 

concentration to O in the gas phase for a short time (e.g. by setting 
yin = youi = O) will drive the stable steady state toward a stable 
oscillatory state (see Figure 8a). On the other hand, if the system 

(22) Hindmarsh, A. C; GEAR: Ordinary Differential Equation Systems 
Solver, UCID-30001 Rev. 3, Lawrence Livermore Laboratory, December 
1974. 
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1.0E3 

4.6 14.0 [O2] X 107M 

Figure 5. (a) Sustained oscillations in oxygen concentration exhibited 
by model A. (b) A stable limit cycle on the [Per3+]-[02] plane. Initial 
conditions (in units of 1(T7 M): [H2O2] = 8-5, [NAD1] = 1.5, [O2"] = 
2.0, [O2] = 5.0, [Per3+] = 0.49, [col] = 80.8, [coll] = 95.0, [colli] = 
8.7. Parameters: A1 = 1.0 X 107 M"1 s"1, A2[NADH] = 1.1626 s"', 
A3[NADH] = 1.0 S"1, A8 = 6.0 X 107 M"1 s"1, A10 = 1.1 X 10' M"1 sr\ 
An = 1.0 X 108M-' s-', A12[NADH] = 1.0s-', A13= 1.0 X 107M-1S-', 
A,= 1.0 s-', and [O2],,= 10"5M. 

90 

87 

86 

\ 

X \\ 
' \\ 

\ I 1 1 
• v 

I i 

A\ n 
U 
11 

U 

u\\ f 

Mi 
I I ' I 

i . I I i i i * I 

I 1 1 / 
I i / 

1.2 

1.0 s 

-0.8 

0.6 

0.4 

- V 1 0 
— V12 

100 200 300 

t i m e (S) 

400 

Figure 6. Plot of the rates of reactions R10 and R12 during a few periods 
of the sustained oscillations shown in Figure 5. 

is initially in a stable oscillatory state, a spike of H2O2 will drive 
it down to a stable steady state (Figure 8b). Note that the 
oscillations occur around the higher O2 steady state as predicted 
by Figure 7. Indeed, such a coexistence of a stable steady state 
and an oscillatory state has been recently confirmed experimentally 
by Aguda, Hofmann Frisch, and Olsen.23 

D. Phase Diagrams. The boundary between those parameter 
values at which a unique steady state exists and those for which 
three exist is given by the condition that the determinant of the 
Jacobian matrix must vanish9 

det [dxF] = 0 (5) 

where [d„F],7 = 6F1JdXj evaluated at steady state and F is equal 

(23) Aguda, B.; Hofmann Frisch, 
Submitted for publication. 

L.-L.; Olsen, L. F. J. Am. Chem. Soc. 

120 

,X10-'M-

Figure 7. Calculated steady states of oxygen as a function of A10. Three 
steady states coexist for values of A10 between 93.0 and 105. Between 
the two Hopf bifurcation points labeled Hl and H2, the steady states are 
unstable and stable oscillations occur. The amplitudes of these oscilla­
tions are schematically shown by the dotted curve (s = stable, u = 
unstable). Parameter values except A10 are given in Figure 5. 

time (S) 5.4E3 

(b) 

time (S) 4.3E3 

Figure 8. (a) A stable steady state is driven to an oscillatory state by 
cutting off the supply of oxygen for a short time as indicated by the 
arrow. This is done by letting A1 = 0 temporarily for 2 time units during 
the integration of the kinetic equations. Initial conditions (in units of 10"7 

M): [H2O2] = 4.0, [NAD*] = 3.0, [Of] = 7,0, [O2] = 3.7, [Per3+] = 
0.49, [col] = 80.8, [coll] = 95.0, [colli] = 8.7. Parameters as in Figure 
5 except A10 = 1.05 X 109 M'1 s"1. (b) A transition from an oscillatory 
state to a stable steady state occurs when the reaction system is spiked 
with H2O2 at the point indicated by the arrow. The H2O2 spike is carried 
out by instantaneously bringing [H2O2] up to 4.5 XlO -6M and then 
continuing the integration. Initial conditions (in units of lO"7 M): 
[H2O2] = 8.5, [NAD1] = 1.5, [O2"] = 2.0, [O2] = 5.0, [Per3+] = 0.49, 
[col] = 80.8, [coll] = 95.0, [colli] = 8.7. Parameters as in Figure 5 
except A10 = 1.05 X 10' M'1 s"1. 

to the right-hand side of eq 2. The complete and exact steady-state 
analysis of model A has already been carried out (see eq 5.3 of 
ref 9). We add here an experimentally useful, mathematically 
necessary (but not sufficient) condition on the total enzyme 
concentration for the existence of three steady states: 

v\nv\\ k\2 f-'in i-'in ^ 1 2 ^ 1 3 

A8A, A1 0 A3 A2 A1 0 ^u&s 
(6) 
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Figure 9. (a) Schematic representation of regions of sustained oscillations 
(hatched) and three steady states (bounded by bold lines) on the £,-i;

in 
parameter plane. The widths of these regions have been exaggerated for 
clarity; the numbers given are numerically determined. All other pa­
rameters as in Figure 5 except kl0 = 1.05 X 10' M"1 s"1. (b) A close-up 
of the oscillatory (hatched) and multiple steady state (bold lines) regions 
within a narrow range of £, and uin. A coexistence between a stable 
oscillatory state and a stable steady state occurs where the two regions 
overlap. 

These inequalities are derived with use of Descartes' rule of signs24 

on the coefficients /J1 and /J2 of eq 5.3 of ref 9. The numerically 
determined region of multiple steady states given in Figure 9 is 
a subset of the region defined by the inequalities in (6). 

The boundary between oscillatory and non-oscillatory regions 
is given by the Hopf bifurcation theorem25 which states, among 
other things, that sustained oscillations will arise when a pair of 
complex conjugate eigenvalues cross the imaginary axis. In Figure 
9, the oscillatory region is plotted along with the three-steady-state 
region on the vin-Ex parameter plane. Again, the parameters viTt 

and £, are chosen because they are experimentally controllable. 

(24) Uspensky, J. V. Theory of Equations; McGraw-Hill: New York, 
1948. 
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Hopf Bifurcation; Cambridge U.P.: London, 1981. 

(26) Chance, B.; Higgins, J. Arch. Biochem. 1949, 22, 224. 
(27) Chance, B. Arch. Biochem. Biophys. 1952, 41, 416. 
(28) George, P. Biochem. J. 1953, 54, 267. 
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(34) Odajima, T. Biochim. Biophys. Acta 1971, 235, 52. 
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Careful experimental determination of any overlap between the 
three-steady-state region and the oscillatory region will be nec­
essary to test the prediction of these simulations with model A. 
We also note, briefly, that variation of a third experimentally 
adjustable parameter (such as [NADH] which is taken here to 
be constant) may vary the region of overlap shown in Figure 9. 
It may be possible to adjust these regions such that the cusp points 
come close to one another. Such a confluence of degenerate 
singular points may lead to very exotic dynamics. This possibility 
is being investigated further in our laboratory. 

E. Different Rate Constants Giving the Same Dynamics. Before 
closing this section, we remark on the transformation of the rate 
constants when one assigns units for concentrations. This 
transformation affects all rate constants except those of first-order 
reactions. For example, when one takes the concentrations of H2O2 

and Per3"1" to be in units of 10~7 M, the value of the rate constant 
Ic1 (in units of M"1 s"1) will have to be multiplied by 107 to preserve 
the dynamics of the system. This transformation allows us to map 
model parameters to experimentally reasonable values of the rate 
constants. As an explicit example, the rate constants used in 
Figure 5 were derived from the following unitless parameters, 
assigning a concentration unit of 10~7 M: Zc1 = 1.0, A2 = 1.1626, 
A3 = 1.0, Ar8 = 6.0, Ar10 = 100, A1, = 10,A12= 1.0, A13= 1.0,i>in 

= 100, A1 = 1.0. These rate constants will give the same sustained 
oscillations as those used in Figure 5. 

Different sets of rate constants giving the same dynamics are 
found when the kinetic equations are cast in dimensionless form. 
We report in the Appendix a set of dimensionless equations for 
model A. Note that the process of de-dimensionalization reduces 
the number of parameters from 11 to 9. It is also shown in the 
Appendix that, under oscillatory conditions, the concentrations 
of the species NAD' and Per3+ are changing at a relatively faster 
rate compared to those of the other six species. This coincides 
with our interpretation of the origin of oscillations in this system 
as being due to switching between autocatalytic production of 
NAD* and depletion of this radical by a process that involves Per3+. 

IV. Concluding Remarks 

The validity of model A can be tested by comparing future 
experiments to the predictions offered by the computer simulations 
presented in this paper. One prediction is that of the coexistence 
of a stable oscillatory state with a stable steady state; more 
specifically, associated with the oscillatory state is an unstable 
oxygen steady-state concentration that is higher than the coexisting 
stable steady state. Aguda, Hofmann Frisch, and Olsen23 recently 
found experimental evidence for the coexistence of an oscillatory 
state with a stable steady state in the peroxidase-oxidase reaction. 
They also showed that switching between the oscillations and 
steady state can be accomplished by the oxygen or H2O2 per­
turbations predicted by model A. 

The only oscillations we have seen so far in our simulations using 
model A are smooth and almost sinusoidal. The sawtooth-shaped 
oscillations2 of both oxygen and NADH seen in most reported 
experiments at 25 0C have not been generated by simulations with 
model A (although the 4-species models reproduce this behavior 
quite well). Fed'kina et al.16 have presented experimental results 
which showed that the characteristic phases of compound III 
kinetics can be identified in each period of the oscillations. 
Furthermore, when the temperature was increased from 25 to 35 
0C (see Figure 3 of ref 16), the abrupt transition between phases 
was smoothed out and the oscillations became nearly sinusoidal. 
This variation in temperature would correspond to a variation in 
rate constants. If the sawtooth and sinusoidal modes do correspond 
to different temperature ranges, further study of model A with 
different parameter values should reveal both modes of oscillation. 

Other experimentally controllable parameters exist that can 
be manipulated to give different modes of oscillation. Fed'kina 
et al.16 have observed two different kinds of oscillations: (i) a 
relatively slow reaction with a high O2 concentration and rather 
low NADH concentration with slow decomposition of compound 
III (these oscillations have a large period); and (ii) a fast reaction 
with high NADH concentration and low O2 concentration with 
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fast decomposition of colli (these oscillations have a small period). 
The parameters that can be varied in these experiments are the 
percentage of oxygen in the gaseous mixture, the enzyme con­
centration, and the NADH concentration in the feed. We have 
not yet been successful in reproducing the abovementioned modes 
of oscillation in our computer simulations using model A. 

Both model A and the FAB scheme discussed in section HB 
assume that NADH concentration is kept constant. In experi­
ments, although NADH must be continuously fed into the reaction 
system in order to produce sustained oscillations, the NADH 
concentration in the reactor is seen to undergo oscillations as well. 
We believe that model A contains the essential network of re­
actions responsible for the oscillatory behavior of the PO reaction 
and its ability to exhibit bistability at the same time. Experi­
mentally observed behavior which has not been reproduced by 
model A includes chaotic oscillations; inclusion of NADH as a 
time-dependent species may lead to chaos since the variations in 
the concentration of this species would influence the two feedback 
loops of model A. It is anticipated that the inclusion of the 
reactions involving ferroperoxidase, particularly that with oxygen 
to produce compound III, could also lead to the complex and 
chaotic oscillations observed experimentally. 

Using values of the parameters in model A (rate constants and 
total enzyme concentration) used by Yokota and Yamazaki4 in 
their nearly quantitative simulation of the closed system via the 
YY model, we found that only damped oscillations can be gen­
erated by model A. These damped oscillations occur only for 
values of the rate constant for the reaction producing compound 
III that are several orders of magnitude larger than the YY value. 
What this observation suggests is that a faster production of 
compound III is necessary to produce sustained oscillations; the 
inclusion of the reaction between ferroperoxidase and oxygen to 
produce compound III (R6 in Table II) is one way to satisfy this 
requirement and will be studied in future simulations. 
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Appendix 
We transform the kinetic eq 2 into dimensionless forms which 

reveals two time scales in the system. Singular perturbation 
theory42 treats the dynamics of systems when the dynamical 
variables have widely differing time scales. For convenience of 
notation, we let A = [H2O2], B = [NAD'], C = [O2"], F = [O2], 
W = [Per3+], X = [col], Y = [coll], and Z = [colli]. Recall 
that vin = ktFeq. 

(42) O'Malley, R. E. Introduction to Singular Perturbations; Academic 
Press: New York, 1974. 
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The enzyme conservation constraint is given by the equation 

fww + SxX + s> + sV = £,otai(constant) (A4) 

For the values of the rate constants that give sustained oscil­
lations in Figure 5, $a = 110, ft = 1(T3, £. = 1, fw = 9.09 X 10"5, 
Zx = 0.6, fj, = 1, fz = 1.67, and t = 10"4. These values imply that 
b and w (dimensionless concentrations of NAD* and Per3+, re­
spectively) are relatively faster variables compared to the other 
variables. 
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